Wind-Driven Overturning, Mixing and Upwelling in Shallow Water: A Nonhydrostatic Modeling Study
نویسنده
چکیده
Using a nonhydrostatic numerical model, this work demonstrates that onshore winds are a principal agent of overturning and vigorous vertical mixing in nearshore water of lakes and inner continental shelves. On short (superinertial) timescales of a few hours, onshore winds create surface currents pushing water against the shore which, via the associated pressure gradient force, creates an undercurrent. The resulting overturning circulation rapidly becomes dynamically unstable due to the Kelvin-Helmholtz instability mechanism, internal gravity waves form, and vigorous vertical mixing follows. The vertical extent of the overturning cell depends on the speed of surface currents and density stratification (which is influenced by other processes such as tidal mixing). In smaller enclosed water bodies, wave reflection in conjunction with dynamical instabilities support rapid mixed-layer deepening and overturning of the entire water column. Based on these findings, the author postulates that dynamic instabilities following from onshore wind events are of fundamental importance to biogeochemical cycles and ecological processes in shelf seas and lakes.
منابع مشابه
Shallow, Intermediate, and Deep Overturning Components of the Global Heat Budget
The ocean’s overturning circulation and associated heat transport are divided into contributions based on water mass ventilation from 1) shallow overturning within the wind-driven subtropical gyres to the base of the thermocline, 2) overturning into the intermediate depth layer (500–2000 m) in the North Atlantic and North Pacific, and 3) overturning into the deep layers in the North Atlantic (N...
متن کاملFueling export production: nutrient return pathways from the deep ocean and their dependence on the Meridional Overturning Circulation
In the Southern Ocean, mixing and upwelling in the presence of heat and freshwater surface fluxes transform subpycnocline water to lighter densities as part of the upward branch of the Meridional Overturning Circulation (MOC). One hypothesized impact of this transformation is the restoration of nutrients to the global pycnocline, without which biological productivity at low latitudes would be s...
متن کاملMoon, tides and climate
1 by laser reflectors left there by astronauts. What does this motion have to do with the ocean circulation? By Kepler's laws, the recession implies that there is a continuing loss of energy in the Earth–Moon system of 3 ǂ10 12 watts, or 3 terawatts, mostly in the ocean. But where in the ocean does this energy go, and what are its effects? On page 775 of this issue, Egbert and Ray 2 produce evi...
متن کاملRemote Wind-Driven Overturning in the Absence of the Drake Passage Effect
Zonal wind stress over the Southern Ocean may be responsible for a significant fraction of the meridional overturning associated with North Atlantic Deep Water. Numerical experiments by Tsujino and Suginohara imply that the zonal periodicity of the Southern Ocean is not necessary for midlatitude westerly winds to drive strong remote meridional overturning. Here, idealized numerical experiments ...
متن کامل3D Modeling of Wind-Driven Circulation In The Northern Indian Ocean During Monsoon
Abstract The purpose of this research is to design and identify some of the natures and characteristics of high-resolution surface currents in the Northern Indian Ocean. The pattern of 3D circulation of the Wind-driven surface currents, Sea surface temperature (SST) and Sea Surface Salinity (SSS) distribution in the Northern Indian Ocean using The MIT general circulation model (MITgcm) with ho...
متن کامل